Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals.
نویسندگان
چکیده
Time-dependent double-hybrid density functional methods are evaluated for the calculation of vertical singlet-singlet valence excitation energies of a wide variety of organic molecules. Beside the already published TD-B2-PLYP method, an analogous approach based on the recently published ground state B2GP-PLYP functional is presented for the first time. Double-hybrid functionals contain a hybrid-GGA-like part for which a conventional TDDFT linear response treatment is carried out. The thus obtained excitation energies are afterwards corrected by adding a non-local correlation portion, which is based on an CIS(D) type excited state perturbative correction. Both, TD-B2-PLYP and TD-B2GP-PLYP, are first applied to the 142 vertical singlet excitation energies in a benchmark set by Schreiber et al., that contains small and medium sized organic molecules. In a second part, a new benchmark set composed of five large organic dyes is proposed. Accurate reference values are derived from experimental 0-0 excitation energies in solution. A back-correction scheme based on TDDFT computations is presented by which solvent, relaxation and vibrational effects are removed, yielding experimental vertical gas phase excitation energies with an estimated accuracy of about +/-0.1 eV. The TD-B2-PLYP, TD-B2GP-PLYP and a variety of conventional TDDFT methods are then applied to this new benchmark set. The results for both considered test sets show that the new double-hybrid approaches yield the smallest mean absolute deviations of 0.22 eV for the first benchmark set and 0.19 eV (TD-B2-PLYP) and 0.16 eV (TD-B2GP-PLYP) for the new organic dye test set. Apart from a break-down of the perturbative correction for very high-lying transitions (larger than 8 eV), it is generally found that the double-hybrid functionals show high robustness and accuracy that cannot be obtained with conventional density functionals (e.g. B3-LYP).
منابع مشابه
Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections.
In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Pr...
متن کاملEnergetic Study of Clusters and Reaction Barrier Heights from Efficient Semilocal Density Functionals
The accurate first-principles prediction of the energetic properties of molecules and clusters from efficient semilocal density functionals is of broad interest. Here we study the performance of a non-empirical Tao-Mo (TM) density functional on binding energies and excitation energies of titanium dioxide and water clusters, as well as reaction barrier heights. To make a comparison, a combinatio...
متن کاملAssessing Excited State Energy Gaps with Time-Dependent Density Functional Theory on Ru(II) Complexes.
A set of density functionals coming from different rungs on Jacob's ladder is employed to evaluate the electronic excited states of three Ru(II) complexes. While most studies on the performance of density functionals compare the vertical excitation energies, in this work we focus on the energy gaps between the electronic excited states, of the same and different multiplicity. Excited state ener...
متن کاملStructural and electronic properties of polyacetylene and polyyne from hybrid and Coulomb-attenuated density functionals.
The bond length alternation (BLA), the highest-occupied-lowest-unoccupied (HO-LU) orbital energy gap, and the corresponding excitation energy are determined for trans-polyacetylene (PA) and polyyne (PY) using density functional theory. Results from the Coulomb-attenuated CAM-B3LYP functional are compared with those from the conventional BHHLYP and B3LYP hybrid functionals. BLA values and HO-LU ...
متن کاملChiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules
We report the implementation of the computation of rotatory strengths, based on time-dependent density functional theory, within the Amsterdam Density Functional program. The code is applied to the simulation of circular dichroism spectra of small and moderately sized organic molecules, such as oxiranes, aziridines, cyclohexanone derivatives, and helicenes. Results agree favorably with experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 11 22 شماره
صفحات -
تاریخ انتشار 2009